理解RxJava线程模型

RxJava作为目前一款超火的框架,它便捷的线程切换一直被人们津津乐道,本文从源码的角度,来对RxJava的线程模型做一次深入理解。(注:本文的多处代码都并非原本的RxJava的源码,而是用来说明逻辑的伪代码)

入手体验

RxJava 中切换线程非常简单,例如最常见的异步线程处理,主线程回调的模型,可以很优雅的用如下代码来做处理:

Observable.just("magic")
        .map(str -> doExpensiveWork(str))
        .subscribeOn(Schedulers.io())
        .observeOn(AndroidSchedulers.mainThread())
        .subscribe(obj -> System.out.print(String.valueOf(obj)));

如上,subscribeOn(Schedulers.io())保证了doExpensiveWork 函数发生在io线程,observeOn(AndroidSchedulers.mainThread())保证了subscribe 回调发生在Android 的主线程。所以,这自然而然的引出了本文的关键点,subscribeOnobserveOn到底区别在哪里?

流程浅析

要想回答上面的问题,我们首先需要对RxJava的流程有大体了解,一个Observable从产生,到最终执行subscribe,中间可以经历n个变换,每次变换会产生一个新的Observable,就像奥运开幕的传递火炬一样,每次火炬都会传递到下一个人,最终点燃圣火的是最后一个火炬手,即最终执行subscribe操作的是最后一个Observable,所以,每个Observable之间必须有联系,这种关系在代码中的体现就是,每个变换后的Observable都会持有上一个Observable 中OnSubscribe对象的引用(Observable.create 函数所需的参数),最终 Observable的subscribe函数中的关键代码是这一句:

observable.onSubscribe.call(subscriber)

这个observable就是最后一个变换后的observable,那这个onSubscribe对象是谁呢?如何一个observable没有经过任何变换,直接执行了subscribe,当然就是我们在create中传入的onSubscribe, 但如果中间经过map、reduce等变换,这个onSubscribe显然就应该是创建变换后的observable传入的参数,大部分变换最终都交由lift函数:

public final <R> Observable<R> lift(final Operator<? extends R, ? super T> operator) {
    return new Observable<R>(new OnSubscribeLift<T, R>(onSubscribe, operator));
}

所以,上文所提到的onSubscribe对象应该是OnSubscribeLift的实例,而这个OnSubscribeLift所接收的两个参数,一个是前文提到的,上一个Observable中的OnSubscribe对象,而operator则是每种变换的一个抽象接口。再来看这个OnSubscribeLift对象的call方法:

public void call(Subscriber<? super R> o) {
	Subscriber<? super T> st = operator.call(o);
	parent.call(st);
}

operator与parent就是前文提到的两个参数,可见,operator接口会拥有call方法,接收一个Subscriber, 并返回一个新的Subscriber对象,而接下来的parent.call(st)是回调上一层observable的onSubscribe的call方法,这样如此继续,一直到一个onSubscribe截止。这样我们首先理清了一条线路,就是从最后一个observable的subscribe后,OnSubscribe调用的顺序是从后向前的。

这就带来了另外一个疑问,从上面的代码可以看到,在执行parent.call(st)之前已经执行了operator.call(o)方法,如果call方法里就把变换的操作执行了的话,那似乎变换也会是从后向前传递的呀?所以这个operator.call方法绝对不是我们想象的那么简单。这里以map操作符为例,看源码:

public Subscriber<? super T> call(final Subscriber<? super R> s) {
    MapSubscriber<T, R> parent = new MapSubscriber<T, R>(o, transformer);
    o.add(parent);
    return parent;
}

这里果然没有执行变换操作,而是生成一个MapSubscriber对象,这里需要注意MapSubscriber构造函数的两个参数,transformer是真正要执行变换的Func1对象,这很好理解,那对于o这个Subscriber是哪一个呢?什么意思?举个🌰:

o1 -> o2 -> subscribe(Subscriber s0);

o1 经过map操作变为o2, o2执行subscribe操作,如果你理解上文可以知道,这段流程的执行顺序为s0会首先传递给o2, o2的lift操作会将s0转换为s1传递给o1, 那么在生成o2 这个map操作的 call(final Subscriber<? super R> s)方法中,s值得是谁呢?是s0还是s1呢?答案应该是s0,也就是它的下一级Subscriber,原因很简单,call方法中返回的MapSubscriber对象parent才是s1.

所以,我们来看一下MapSubscriber的onNext方法做了什么呢?

public void onNext(T t) {
    R result;
    result = transformer.call(t);
    s.onNext(result);
}

很明了,首先执行变换,然后回调下一级的onNext函数。

至此,一个observable从初始,到变换,再到subscribe,我们已经对整个流程有了大体了解。简单来讲一个o1经过map变为o2,可以理解为o2对o1做了一层hook,会经历两次流程,首先是onSubscribe对象的call流程会从o2流向o1,我们简称流程a,到达o1后,o1又会出发Subscriber的onNext系列流程,简称流程b,流程b才是真正执行变换的流程,其走向是从o1流向o2.理解了这个,我们就可以更近一步的理解RxJava中线程的模型了。

tip: 一定要深刻理解流程a与流程b的区别。这对下文理解线程切换至关重要。

切换方式

RxJava对线程模型的抽象是Scheduler,这是一个抽象类,包含一个抽象方法:

 public abstract Worker createWorker();

这个Worker是何方神圣呢?它其实是Scheduler的抽象内部类,主要 包含两个抽象方法:

 1) public abstract Subscription schedule(Action0 action);

 2) public abstract Subscription schedule(final Action0 action, final long delayTime, final TimeUnit unit);

可见,Worker才是线程执行的主力,两个方法一个用与立即执行任务,另一个用与执行延时任务。而Scheduler是Worker的工厂,用于对外提供Worker。

RxJava中共有两种常见的方式来切换线程,分别是subscribeOn变换与observeOn变换,这两者接收的参数都是Scheduler。接下来从源码层面来对比这两者的差别。

subscribeOn

首先看subscribeOn的部分

public final Observable<T> subscribeOn(Scheduler scheduler) {
    return create(new OperatorSubscribeOn<T>(this, scheduler));
}

create一个新的Observable,传入的参数是OperatorSubscribeOn,很明显这应该是OnSubscribe的一个实现,关注这个OperatorSubscribeOn的call实现方法:

public void call(final Subscriber<? super T> subscriber) {
     final Worker inner = scheduler.createWorker();
     inner.schedule(new Action0() {
           	@Override
            public void call() {
                final Thread t = Thread.currentThread();

                Subscriber<T> s = new Subscriber<T>(subscriber) {
                    @Override
                    public void onNext(T t) {
                        subscriber.onNext(t);
                    }

                    ...

                };

                source.unsafeSubscribe(s);
            }
    });
}

这里比较关键了,上文提到了流程a与流程b,首先明确一点,这个call方法的执行时机是流程a,也就是说这个call发生在流程b之前,call方法里首先通过外部传入的scheduler创建Worker - inner对象,接着在inner中执行了一段代码,神奇了,Action0中call方法这段代码就在worker线程中执行了,也就是此刻程进行了切换。注意最后一句代码source.unsafeSubscribe(s),source 代表创建OperatorSubscribeOn对象是传进来的上一个Observable, 这句的源码如下:

public final Subscription unsafeSubscribe(Subscriber<? super T> subscriber) {
            return onSubscribe.call(subscriber);
}

和上文提到的lift方法中OnSubscribeLift对象的call方法中parent.call(st)作用类似,就是将当前的Observable与上一个Observable通过onSubscribe关联起来。

至此,我们可以大致了解了subscribeOn的原理,它会在流程a就进行了线程切换,但由于流程a上实际上都是Observable之间串联关系的代码,并且是从后面的Observable流向前面的Observable,这带来的一个隐含意思就是,对于流程b而言,最早的subscribeOn会屏蔽其后面的subscribeOn! 比如:

Observable.just("magic")
          .map(file -> doExpensiveWork(file))
          .subscribeOn(Schedulers.io())
          .subscribeOn(AndroidSchedulers.mainThread())
          .subscribe(obj -> doAction(obj)));

这段代码中无论是doExpensiveWork函数还是doAction函数,都会在io线程出触发。

observeOn

理解了subscribeOn,那理解observeOn就会更容易一下,observeOn函数最终会转换到这个函数:

public final Observable<T> observeOn(Scheduler scheduler, boolean delayError, int bufferSize) {
        return lift(new OperatorObserveOn<T>(scheduler, delayError, bufferSize));
}

很明显,这是做了一次lift操作,我们需要关注OperatorObserveOn这个Operator,查看其call方法:

public Subscriber<? super T> call(Subscriber<? super T> child) {
    ObserveOnSubscriber<T> parent = new ObserveOnSubscriber<T>(scheduler, child, delayError, bufferSize);
    parent.init();
    return parent;
}

这里返回的是一个ObserveOnSubscriber对象,我们关注这个Subscriber的onNext函数,

public void onNext(final T t) {
    schedule();
}

它只是简单的执行了schedule函数,来看下这个schedule:

protected void schedule() {
        recursiveScheduler.schedule(this);
}

这里乱入的recursiveScheduler.schedule是什么鬼?它并不神奇,它就是ObserveOnSubscriber构造函数传进来的scheduler创建的worker:

this.recursiveScheduler = scheduler.createWorker();

所以,magic再次产生,observeOn在其onNext中进行了线程的切换,那这个onNext是在什么时候执行的呢?通过上文可知,是在流程b中。所以observeOn会影响其后面的流程,直到出现下一次observeOn或者结束。

周边技巧

线程模型的选择

RxJava为我们内置了几种线程模型,主要区别如下:

Scheduler.Worker强势抢镜

其实RxJava中的Worker完全可以抽出来为我所用,如下面这种写法,就是新开线程执行了一个action。

 Scheduler.Worker worker = Schedulers. newThread().createWorker();
 worker.schedule(new Action0() {
            @Override
            public void call() {
                throw new RuntimeException("surprise");
            }
        });

当然,你要选择合适的时机去关闭(unsubscribe)worker来释放资源。

自带光环的操作符

某些操作符是有默认的线程模型的,比如前文提到的repeat 与retry会默认在trampoline线程模型下执行, buffer ,debounce之类会默认切换到computation。这里不做深入探讨,只是当你遇到某些问题时记得,有些人物是自带装备与光环的。

I don't think you're right

总结

理解RxJava的线程模型最重要的是要与我们平常对异步的理解来区分开:


doAsync("magic", new Callback() {
    @Override
    public void handle(Object msg) {
        a) ....
    }
});

b)....

这是之前我们常写的代码,通常只会区分UI线程和非UI 线程,doAsync函数开始后,程序进行了分流,一个线程在执行一个doAsync, 另一个线程在执行b段代码。RxJava另辟蹊径,对整个线程做了抽象,RxJava的处理顺序像一条流水,这不仅仅表现在代码写起来像一条锁链上,逻辑上也是如此,对Observable自身而言,更改线程只是变换了流水前进的轨道,并不是进行分流,Android中常见 非UI线程处理数据,UI 线程展示数据也只是这条流水变换的一种方式。

就我个人的理解,对于RxJava的线程切换,把它理解为异步,非异步,阻塞,非阻塞都有些不恰当,grc比较合理的理解是:执行的操作是异步的,但是保证程序的执行顺序是同步的, 这一点和JS中的Promise就有神似的地方了。